Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan
نویسندگان
چکیده
Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.
منابع مشابه
Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data
Nine ERS-1 and ERS-2 descending orbit data acquired over Aira Caldera between June 1995 and November 1998 were used to create 36 differential interferograms. Although the interferograms exhibit a relatively low level of coherence, even for couples sampling short time intervals (6 months), Synthetique Aperture Radar (SAR) observations reveal a distinct range change pattern over Kokubu urban area...
متن کاملMethods of Volcano Monitoring To Predict Likelihood of Eruption in Long Valley Caldera
Volcano monitoring uses knowledge of volcanic processes and extensive data gathering to analyze areas of volcanic activity. The main goal is to learn the nature of the volcano, the magmatic processes occurring, and the likelihood of a future eruption. Volcano monitoring centers around three aspects of volcanic processes: ground deformation, seismic activity, and gas emissions. These techniques ...
متن کاملHow caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes
Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage...
متن کاملA model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions
The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 105 to 106 years. We address the question of why buoyant and otherwise eruptible highsilica magma should accumulate for long times in shallow chambers rather than e...
متن کاملGround surface deformation patterns , magma supply , and magma storage at Okmok volcano , Alaska , from InSAR analysis : 2 . Coeruptive deflation , July – August 2008
[1] A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok’s previous eruption in 1997. In this paper we use data from several radar satellites a...
متن کامل